'프로그래밍/Machine Learning'에 해당되는 글 3건

  1. 2018.08.27 tensorflow 설정
  2. 2017.08.08 CNN MNIST
  3. 2017.07.24 기본 텐서플로우 소프트맥스 MNIST 코드.

근 1년 만에 다시 시작하려니 개발환경 셋팅하는 것도 낯설다.
또 잊기 전에 정리해두자.

현재 개발 환경은
ubuntu 18.04 LTS
nvidia GTX 1080 Ti

1. gpu 드라이버 설정

아래 둘 중에 한가지 방법으로 설정.
1)
$ ubuntu-drivers devices 내 기기 확인
$ sudo apt install nvidia-driver-390 설치
$ nvidia-smi 로 확인

2)
$ add-apt-repository ppa:graphics-drivers/ppa
$ apt update
$ apt install nvidia-390
$ nvidia-smi

2. cuda 9.0 

nvidia 사이트에  가서 .deb 파일을 다운받고 설치.

$ dpkg -i cuda-repo-ubuntu1704-9-0-local_9.0.176-1_amd64.deb
$ apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub
$ apt-get install cuda

3. .bashrc 수정

export PATH=$PATH:/usr/local/cuda/bin
export CUDADIR=/usr/local/cuda
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64

4. cudnn 7.0
https://developer.nvidia.com/rdp/cudnn-archive )

$ tar xvfz cudnn-9.0-linux-x64-v7.tgz
$ cp cuda/include/* /usr/local/cuda/include
$ cp -d cuda/lib/* /usr/local/cuda/lib64
$ chmod a+r /usr/local/cuda/include/cudnn.h
$ chmod a+r /usr/local/cuda/lib64/libcudnn*

patch 파일들을 다 받아서 순서대로

dpkg -i 패키지.deb 로  설치.

5. tesorflow-gpu 1.10.1

텐서플로우 설치.

$ pip3 install tensorflow-gpu


'프로그래밍 > Machine Learning' 카테고리의 다른 글

CNN MNIST  (0) 2017.08.08
기본 텐서플로우 소프트맥스 MNIST 코드.  (0) 2017.07.24
Posted by 게 르 니 카




# MNIST 데이터 불러오기.

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)


# tensorflow 세션 구동.

import tensorflow as tf

sess = tf.InteractiveSession()


# x  : 트레이닝 입력 벡터.  

# y_ : 결과 레이블.

x = tf.placeholder(tf.float32, shape=[None, 784])

y_ = tf.placeholder(tf.float32, shape=[None, 10])

# 입력 벡터를 28*28 행렬로 전환. 

x_image = tf.reshape(x, [-1,28,28,1])


# Weight 초기화 함수. 

def weight_variable(shape):

  initial = tf.truncated_normal(shape, stddev=0.1)

  return tf.Variable(initial)


# Bias 초기화 함수. 

def bias_variable(shape):

  initial = tf.constant(0.1, shape=shape)

  return tf.Variable(initial)


# 2D convolution 함수.

def conv2d(x, W):

  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


# 2*2 max pooling 함수.

def max_pool_2x2(x):

  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


# 첫번째 Convolutional Layer

W_conv1 = weight_variable([5, 5, 1, 32])

b_conv1 = bias_variable([32])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

h_pool1 = max_pool_2x2(h_conv1)


# 두번째 Convolutional Layer

W_conv2 = weight_variable([5, 5, 32, 64])

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

h_pool2 = max_pool_2x2(h_conv2)


# fully-Connected Layer

W_fc1 = weight_variable([7 * 7 * 64, 1024])

b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)


# Dropout Layer

keep_prob = tf.placeholder(tf.float32)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)


# Readout Layer

W_fc2 = weight_variable([1024, 10])

b_fc2 = bias_variable([10])


y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2


# 훈련, 측정 모델.

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


sess.run(tf.global_variables_initializer())


for i in range(10000):

  batch = mnist.train.next_batch(50)

  if i%1000 == 0:

    train_accuracy = accuracy.eval(feed_dict={

        x:batch[0], y_: batch[1], keep_prob: 1.0})

    print("step %d, training accuracy %g"%(i, train_accuracy))

  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})


print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))


'프로그래밍 > Machine Learning' 카테고리의 다른 글

tensorflow 설정  (0) 2018.08.27
기본 텐서플로우 소프트맥스 MNIST 코드.  (0) 2017.07.24
Posted by 게 르 니 카


# -*- coding: utf-8 -*-


# MNIST 데이터 다운로드.

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets( "MNIST_data/", one_hot=True )

# TensorFlow 라이브러리 추가.
import tensorflow as tf

# 테스트를 위한 라이브러리 추가.
import matplotlib.pyplot as plt
import numpy as np

# 변수들 설정.
train_data = tf.placeholder( tf.float32, [None, 784] )

Weights = tf.Variable( tf.zeros( [784, 10] ) )

Bias = tf.Variable( tf.zeros([10] ) )

Hypothesis = tf.nn.softmax( tf.matmul( num_data, Weights ) + Bias )


# cross-entropy 모델 설정.

learning_rate = 0.25

num_label = tf.placeholder( tf.float32, [None, 10] )

cost = tf.reduce_mean( -tf.reduce_sum( num_label * tf.log( Hypothesis ), reduction_indices=[1] ) )

optimizer = tf.train.GradientDescentOptimizer( learning_rate ).minimize( cost )

# cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=Hypothesis, labels=num_label ))

# optimizer = tf.train.AdamOptimizer( learning_rate=learning_rate ).minimize( cost )  # Gradient Descen


# 경사하강법으로 모델 학습.

batch_size = 100

with tf.Session( ) as sess :

    sess.run( tf.global_variables_initializer( ) )

    for i in range( 2000 ) :

        batch_xs, batch_ys = mnist.train.next_batch( batch_size )

        sess.run( optimizer, feed_dict={num_data:batch_xs, num_label:batch_ys} )

        if i % 200 == 0 :

            print( "{0} step, Accuracy {1} ".format( i, sess.run( cost, feed_dict={num_data:batch_xs, num_label:batch_ys} ) ) )

        

    # 학습된 모델이 얼마나 정확한지를 출력한다.

    correct_prediction = tf.equal( tf.argmax(Hypothesis,1), tf.argmax(num_label,1) )

    Accuracy = tf.reduce_mean( tf.cast( correct_prediction, tf.float32 ) )

    print( sess.run( Accuracy, feed_dict={num_data:mnist.test.images, num_label:mnist.test.labels} ) )


'프로그래밍 > Machine Learning' 카테고리의 다른 글

tensorflow 설정  (0) 2018.08.27
CNN MNIST  (0) 2017.08.08
Posted by 게 르 니 카
이전버튼 1 이전버튼

블로그 이미지
게 르 니 카

공지사항

Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

최근에 받은 트랙백

글 보관함